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Abstract: High glucose levels may cause vascular alterations in patients with diabetes,
which can lead to complications such as diabetic retinopathy—an abnormal growth of
retinal blood vessels. The micro-RNA miR-205-5p is known to regulate angiogenesis by
modulating the expression of the vascular endothelial growth factor (VEGFA) in different
systems. This study investigates the role of miR-205-5p in controlling VEGFA expression
both in vitro and in the eye under hyperglycemic conditions. An alloxan-induced diabetic
mouse model and retinal pigment epithelium human cell line (ARPE-19) were exposed
to high glucose and treated with an ectopic miR-205-5p mimic. VEGFA mRNA and
protein levels were assessed using qRT-PCR, Western blot, and immunocytochemistry.
Additionally, human umbilical vein endothelial cells (HUVECs) were employed to evaluate
angiogenesis. Our results show that high glucose significantly reduced miR-205-5p levels
while upregulating VEGFA expression in both ARPE-19 cells and diabetic mice. The
ectopic administration of miR-205-5p (via transfection or intravitreal injection) restored
VEGFA levels and inhibited angiogenesis in HUVEC cultures. Based on these preliminary
data, we suggest a potential therapeutic strategy against VEGFA involving miR-205-5p in
proliferative eye-related vascular disorders.

Keywords: microRNA; angiogenesis; retinal pigment epithelium; diabetes; oxidative stress

1. Introduction
Diabetes mellitus is a chronic disease characterized by systemic complications closely

tied to vascular alterations, including nephropathy, cardiac failure, and blindness [1].
Among the affected tissues, the retinal pigment epithelium (RPE) plays a critical role. This
highly specialized monolayer of cells forms a connection between the vascular choroid
and the photoreceptor cell layer, maintaining the blood–retinal barrier (BRB) [2]. The BRB
facilitates communication between the choroid and the retina, ensuring the appropriate
exchange of nutrients and metabolic waste [3]. However, hyperglycemia in diabetes
disrupts these functions, leading to microvascular damage, even in the early stages of the
disease [4].
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Hyperglycemia-induced vascular alterations are central to the progression of diabetic
retinopathy (DR). Early molecular changes include oxidative stress, inflammation, and per-
icyte loss, which contribute to increased vascular permeability and neovascularization [5].
These alterations are closely tied to the upregulation of vascular endothelial growth factor
A (VEGFA) [6]. Under physiological conditions, the RPE secretes VEGFA to maintain
choroidal endothelial survival and fenestration. However, high glucose conditions lead to
overproduction, exacerbating vascular permeability and promoting leaky blood vessels [7].

MicroRNAs (miRNAs) are highly conserved non-coding RNAs discovered in the
early 1990s [8]. These molecules regulate gene expression by degrading or inhibiting
mRNA transcription targets [9]. Advances in miRNA research have shifted from early
identification to therapeutic applications within the last decade [10]. miRNAs hold potential
for treating proliferative vascular diseases like DR, particularly in cases where VEGFA
antibody therapies fail to produce a response [11]. Among these, miR-205-5p, first identified
in the mammalian eye in 2006 [12], has garnered attention due to its multifaceted roles
in anti-proliferative pathways [11–13], maintenance of epithelial characteristics [14], and
regulation of oxidative stress and angiogenesis [12,15].

The 2024 Nobel Prize in Physiology and Medicine awarded to Victor Ambros and Gary
Ruvkun underscores the significance of miRNA research, recognizing their transformative
role in understanding and targeting diseases at the molecular level [16]. miR-205-5p, in
particular, is highly conserved across species and is expressed predominantly in epithelial
tissues. Recent studies suggest that hyperglycemia can induce epigenetic modifications
affecting miR-205-5p transcription [17], which in turn disrupts its regulatory functions on
VEGFA [18]. Interestingly, miR-205-5p interacts with VEGFA through a well-conserved
single binding site located in the 3′UTR, underscoring its potential as a precise therapeutic
tool [19].

This study investigates the therapeutic potential of miR-205-5p in modulating VEGFA
expression under high glucose conditions. By leveraging both in vivo and in vitro models,
we aim to provide foundational insights into the molecular mechanisms underlying its
anti-angiogenic efficacy. These findings contribute to the broader objective of identifying
miR-205-5p as a novel therapeutic candidate for proliferative vascular diseases such as DR.

2. Materials and Methods
2.1. Cell Culture

The retinal pigment epithelium human cell line (ARPE-19) was obtained from the
American Type Culture Collection (ATCC, Manassas, VA, USA). ARPE-19 cells were cul-
tured for 5 days in Dulbecco’s modified Eagle DMEM/F12 (Invitrogen, Carlsbad, CA, USA)
as previously described [18]. Cells were used from 11 to 30 passages. Cells were cultured to
80–90% confluence at a starting density of 1 × 106 cells/cm2 in different plates, depending
on the technique. ARPE-19 cells were incubated with high glucose (HG group, 35 mmol/D
glucose) (Sigma-Aldrich, St. Louis, MO, USA) or control glucose (CG 5.5 mmol/L glucose)
(Sigma-Aldrich, St. Louis, MO, USA) with 19.5 mmol/L mannitol (Sigma-Aldrich, St. Louis,
MO, USA) to exclude any potential bias due to osmotic effect. As high glucose exposure
results in an oxidative challenge for cells and tissues, we used N-Acetylcysteine (NAC)
as an antioxidant to check the role of oxidative stress in glucose-induced angiogenesis.
For this reason, NAC was used at a concentration of 4 mM (Sigma-Aldrich, St. Louis,
MO, USA). A 1% fetal bovine serum (FBS; Thermo Fisher Scientific, Waltham, MA, USA),
penicillin/streptomycin, and amphotericin 1% were supplied under all conditions. Human
umbilical vein endothelial cells (HUVECs) were isolated from umbilical veins as previously
described [18]. HUVECs were grown in endothelial cell media (Innoprot, Derio, Spain)
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supplemented with 20% FBS, penicillin/streptomycin, and amphotericin 1% at 37 ◦C and
5% CO2 for angiogenesis and migration experiments.

2.2. Cell Culture-Conditioned Media (CCCM)

Cell culture-conditioned media were collected from ARPE-19 after 5 days of treatment
for angiogenesis and scratch wound healing assays with HUVEC cells. CCCM included
the control; control + mimic (miR-205-5p); 35 mM glucose; and 35 mM glucose + mimic
(miR-205-5p).

2.3. Scratch Wound Healing Assay

HUVECs were seeded at 5 × 104 cells/cm2 density in a 24-well plate during 48 h at
37 ◦C and 5% CO2. A wound was mechanically produced by scratching a cell monolayer
with a sterile 200-µL pipette tip across the center of the well with cells attaining 90%
confluence as previously described [19]. After 48 h, the CCCM from ARPE-19 were added
(see Materials and Methods Section 2.2). Cells were then washed with PBS each time to
avoid cell debris. Images were taken at 0, 4, 8, and 24 h using an Olympus CKX41 inverted
microscope (Olympus, Tokyo, Japan) and recorded using an Olympus DP74 digital camera
(Olympus, Tokyo, Japan). The gap distance was analyzed by ImageJ (Version 1.54m), per
the following protocol.

2.4. Cell Viability

Cell viability was measured using 3′-[1-phenylaminocarbonyl-3,4-tetrazolium]-bis(4-
methoxy-6-nitro) benzene sulfonic acid hydrate (XTT; Cell Viability CyQUANTTM; (Thermo
Fisher Scientific, Waltham, MA, USA).

2.5. Mimic Transfection ARPE-19

At 60–80% confluence, ARPE-19 cells were transfected with an miR-205-5p mirVana®

miRNA mimic (Thermo Fisher Scientific, Waltham, MA, USA) 30 pmol (10 µM) using a Lipo-
fectamine 2000 RNAiMAX reagent (Thermo Fisher Scientific, USA) diluted in opti-MEM®

Medium (Thermo Fisher Scientific, Waltham, MA, USA). After 48 hours of transfection,
the conditioned cell culture media and cell pellet were collected and stored at −80 ◦C for
further assays.

2.6. Animals and Diabetic Model

All animal experiments were performed strictly following the ARVO statements for
the use of animals in ophthalmic and visual research and were approved by the Ethics
Committee for Research (Universidad Jaime I Castellón, ref. 21/12/2022). SWISS male
mice were obtained from Janvier Laboratories (Le Genest-Saint-Isle, France). To induce
diabetes, 200 mg/kg of alloxan monohydrate (Sigma Aldrich, St. Louis, MO, USA) was
injected subcutaneously using a 25-gauge needle. 48 h after alloxan injection, mice with
blood glucose levels ≥200 mg/mL were considered for a diabetic group. Animal welfare
was daily checked by the lab veterinary, and blood glucose levels were measured once a
week, as indicated below. VetPen insulin (MSD Animal Health, Rahway, NJ, USA) was used
for those animals with signs of polyuria and polydipsia. Ninety-three mice were randomly
divided in two groups (control or diabetic). After alloxan injections, some animals died
or did not respond to alloxan (n = 10). Control (n = 40) and diabetic (n = 40) groups were
randomly divided into 2 subgroups/each: control, control + mimic (miR-205-5p), diabetic,
and diabetic + mimic (miR-205-5p) n = 20 animals per group were used. An independent
experimental group (n = 3) was used to test the effect of Invivofectamine as a vehicle.
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2.7. Intravitreal Injection

An miR-205-5p mirVana® miRNA mimic (ThermoFisher, Waltham, MA, USA) was
complexed with Invivofectamine 3.0 (ThermoFisher, Waltham, MA, USA), giving a final
concentration of 2 mg/mL. Control and diabetic mice were randomly divided into two
groups (injected with mimic or control) (n = 20/group). To avoid unnecessary suffering,
each mouse received one intravitreal injection into the right eye. The left eye was used
as a naïve control. To assess the effect of the vehicle, 2 mg/mL of Invivofectamine 3.0
(ThermoFisher, Waltham, MA, USA) was intravitreally injected into the right eye in an
independent group n = 3 (vehicle). Four weeks after diabetes induction, the animals re-
ceived one intravitreal injection under a 1:1 cocktail anesthesia (1.5 mL/kg) with ketamine
(100 mg/mL) and xylazine (20 mg/mL). Intravitreal injections were performed with pulled
borosilicate glass micropipettes of approximately 40 µm tip diameter (P97 Sutter Instru-
ments, Novato, CA, USA) connected to an electronic pump. Mice were sacrificed 48 h after
sodium pentobarbital injection (1.5 mL). The eyes were enucleated and the lenses removed.

2.8. Blood Glucose

Blood glucose levels were checked once a week by Contour XT (Bayer, Leverkusen,
Germany) with Contour 25 test strips (Bayer, Leverkusen, Germany), following the manu-
facturer’s instructions.

2.9. Glycated Hemoglobin (HbA1c)

At the end of the experiment, 5 µL of blood samples were used for glycated hemoglobin
assessment by using the Mouse Hemoglobin A1c Assay Kit (Crystal Chem, Elk Grove
Village, IL, USA). The absorbance was measured at 700 nm using a Victor X5 spectropho-
tometer (Perkin Elmer, Madrid, Spain).

2.10. Protein Isolation and Western Blot

ARPE-19 cells were collected in a RIPA buffer (ThermoFisher, Waltham, MA, USA)
and protease/phosphatase inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA). The
complete eye, without the lens, was homogenized using the IKA® Ultra-turrax® (Sigma-
Aldrich, St. Louis, MO, USA) in a RIPA buffer (ThermoFisher, Waltham, MA, USA) and
protease/phosphatase inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA). To ensure
thorough lysis, the samples were sonicated with three 5 min pulses (5 min ultrasounds–
5 min ice). The protein concentration was ascertained using the bicinchoninic acid (BCA) col-
orimetric assay (ThermoFisher, Waltham, MA, USA). An equal amount of protein (30–40 µg)
was loaded onto a 4% stacking–12% resolving SDS-Polyacrylamide gel. The proteins were
transferred onto a PVDF membrane (Millipore, Sigma-Aldrich, St. Louis, MO, USA). The
membrane was blocked with 3% skimmed milk for 1 h. Overnight incubation with primary
antibodies against the VEGFA (1:200 sc-53462 and sc-152, Santa Cruz Biotechnology, Dallas,
TX, USA) and β-actin (1:1000, sc-47778, Santa Cruz Biotechnology, Dallas, TX, USA) was
used as a loading control. Finally, the membranes were incubated for 1 h with anti-mouse
IgG-HRP antibodies (1:10,000, Santa Cruz Biotechnology, Dallas, TX, USA). Visualization
was performed with ECL (ThermoFisher, Waltham, MA, USA) and detected with Image
Quant LAS-100 mini (GE Healthcare, Chicago, IL, USA). Protein levels were quantified by
densitometry using ImageJ (Version 1.54m).

2.11. Immunocytochemistry

ARPE-19 cells were seeded on coverslips (TH. Geyer, Hamburg, Germany) in a 24-well
plate at a density of 1 × 104 cells per well and incubated for 48 h. Subsequently, the cells
were treated as mentioned above. The cells were washed with PBS and fixed with 4% PFA
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for 5 min. The cells were permeabilized with 0.5% Triton X-100 for 15 min. Afterward,
the ARPE-19 cells were blocked with 3% BSA for 1 h and incubated overnight with anti-
VEGFA (1:200, sc-7269, Santa Cruz Biotechnology, Dallas, TX, USA) in 3% BSA to prevent
nonspecific binding. Cells were washed with PBS 3 times, and the secondary antibody
Alexa Fluor 488 goat anti-mouse IgG (1:200, Invitrogen, Darmstadt, Germany) was added
and incubated for 1 h at room temperature. Subsequently, ARPE-19 cells were incubated
with phalloidin (1:400, Proteintech CoraLite™594, Thermo Fisher Scientific, MA, USA) for
20 min. Finally, for DNA staining, cells were incubated for 10 min with 4,6-diamidino-
2-phenylindole (DAPI; Sigma Aldrich, St. Louis, MO, USA). Fluorescence images were
recorded with a laser scanning inverted microscope DM IL LED (Leica Microsystems,
Wetzlar, Germany), and images were processed with Las X software.

2.12. RNA Isolation from ARPE-19 Cells

RNA was isolated from the ARPE-19 cells using an miRNeasy Mini Kit (Qiagen,
Germantown, MD, USA) following the manufacturer’s instructions. The total RNA quantity
and quality (260/280 absorbance ratio) was assessed using NanoDrop 2000 (Thermo Fisher
Scientific, Waltham, MA, USA).

2.13. miRNA Expression Analysis

Quantitative real-time PCR (qRT-PCR) was used to analyze the expression profiles of
the selected miRNAs. For miRNA expression analysis, 100–300 ng of RNA was retrotran-
scribed using a TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, Foster
City, CA, USA) using specific TaqMan RT primers and the thermocycler Verity pro 96-well
thermal cycler (Applied Biosystems, Foster City, CA, USA), with cycles of 16 ◦C/30 min,
42 ◦C/30 min, 85 ◦C/5 min, and 4 ◦C/infinity. The qRT-PCR process was performed using
TaqMan™ microRNA Assays (Thermo Fisher Scientific, Waltham, MA, USA) with TaqMan
Gene Expression Master Mix (Applied Biosystems, Foster City, CA, USA) and RT-PCR
Roche 234 LighterCycler 480 with the appropriate temperature cycles. Normalization was
performed using the RNU6B snoRNA. The relative expression was calculated using the
2−∆∆Ct method.

2.14. mRNA Expression Analysis

The mRNA expression was analyzed using qRT-PCR. 750 ng of RNA was retro-
transcribed with a high-capacity RNA-to cDNA kit (Applied Biosystems, USA) and the
thermocycler Mastercycler Nexus gradient (Eppendorf, Hamburg, Germany), with cycles of
65 ◦C/5 min, 4 ◦C/5 min, 55 ◦C/50 min, 85 ◦C/5 min 37 ◦C/20 min, and 4 ◦C/infinity. qRT-
PCR was performed using SYBR Green Supermix (Bio-Rad, Hercules, CA, USA), primers
(Table 1), and RT-PCR Roche 234 LighterCycler 480 with appropriate temperature cycles.
GAPDH was used as an internal reference gene. The relative expression was calculated
using the 2−∆∆Ct method.

Table 1. mRNA primers for qRT-PCR.

mRNA Forward Reverse

VEGFA 5′-TGAAGGTCGGAGTCAACGGAT-3′ 5′-TTCTCAGCCTTGACGGTGCCA-3′

GAPDH 5′-GACTTATACCGGGATTTCTTG-3′ 5′-AATGTGAATGCAGACCAAAG-3′

2.15. Vasculogenesis Assay

Pre-cooled 96-well plates were coated with 70 µL Matrigel (Becton Dickinson, Andover,
MA, USA). HUVECs were seeded at a density of 3 × 104 cells/cm2 and then treated with
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CCCM for 5 h (see Materials and Methods Section 2.2). 70 µL of the medium was added to
each well. Matrigel was allowed to polymerize for 30 min at 37 ◦C. Images were captured
using an Olympus CKX41 inverted microscope (Olympus, Tokyo, Japan) and recorded
using an Olympus DP74 digital camera (Olympus, Tokyo, Japan). The total tube length
(branch length µm) was automatically quantified by an angiogenesis analyzer plugin from
3 random pictures (1200 × 1800 pixel) for each experimental condition (n = 3) giving
9 samples/condition measured.

2.16. Statistical Analysis

The Shapiro–Wilk normality test was used to test whether a variable was normally
distributed. Differences between the two experimental groups were analyzed using Stu-
dent’s t-test. The variation between groups was calculated using a one-way analysis of
variance (ANOVA) with Tukey’s multiple comparison test. The result of each experiment is
presented as mean ± SEM. Statistical significance was set at 0.05. *, **, *** and **** denoted
significance at 0.05, 0.01, 0.001, and 0.0001 levels, respectively. Statistical analyses were
performed using the GraphPad Prism 9.3.0. software.

3. Results
3.1. High Glucose Modifies miR-205-5p and VEGFA Expression Levels in ARPE-19 Cells

ARPE-19 cells cultured with 35 mM glucose showed a significant reduction in miR-205-
5p expression levels compared to the control group (0.324 ± 0.192) (Figure 1A). Correspond-
ingly, the predicted target of miR-205-5p, VEGFA, was significantly upregulated under high
glucose conditions compared to the control (1.217 ± 0.091) (Figure 1B). Given that high
glucose exposure induces oxidative stress in cells, we investigated whether miR-205-5p
expression could be influenced by the antioxidant agent N-acetylcysteine (NAC). Treatment
with NAC restored miR-205-5p levels to those observed in the control group (0.895 ± 0.135)
(Figure 1C). Furthermore, NAC treatment also led to a significant increase in miR-205-5p
levels in the control group (1.426 ± 0.167) (Figure 1C). To further explore the impact of
NAC, VEGFA mRNA expression was analyzed after antioxidant exposure. Under high
glucose conditions, the NAC treatment significantly reduced VEGFA mRNA expression to
levels comparable to the control group (0.821 ± 0.046) (Figure 1D).

3.2. miR-205-5p Restores VEGFA Expression Levels in ARPE-19 Cells

Hyperglycemia upregulates VEGFA expression levels, leading to a decreased expres-
sion of miR-205-5p. To evaluate the role of miR-205-5p as a modulator of VEGFA mRNA,
ARPE-19 cells were transfected with a miR-205-5p mimic after 5 days of high glucose expo-
sure. Transfection with the miR-205-5p mimic led to a significant increase in miR-205-5p
expression across all conditions (Figure 2A). This intervention restored VEGFA mRNA
expression to levels comparable to the control group (Figure 2B). No significant differences
were observed between the NAC + miR-205-5p mimic group and other treatments (NAC
alone or miR-205-5p mimic alone).

To determine whether changes in VEGFA mRNA expression translated to protein
expression, Western blot and immunocytochemistry analyses were conducted in ARPE-19
cells. Immunocytochemistry revealed weak cytoplasmic immunofluorescence for VEGFA-
positive cells in both the control and control + mimic groups (Figure 3A,B). In contrast,
cells exposed to 35 mM glucose exhibited strong cytoplasmic labeling. The miR-205-5p
mimic administration significantly reduced VEGFA-positive labeling compared to the
glucose-treated group (Figure 3A,B). These findings were corroborated by the Western blot
analysis, which confirmed a reduction in VEGFA protein levels following the miR-205-5p
mimic transfection (Figure 3C).
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3.3. miR-205-5p Regulates High Glucose-Induced Angiogenesis in HUVEC Cells

High glucose conditions promote angiogenesis by enhancing cell migration and prolif-
eration. To investigate the role of miR-205-5p in angiogenesis, XTT, Matrigel, and scratch
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assays were performed using an in vitro model. HUVECs were treated with cell culture-
conditioned media (CCCM) as described in the Materials and Methods Section 2.2. Tube
formation in HUVECs, quantified by measuring total length and master segments, was
assessed as an indicator of angiogenesis. Minimal tubular processes were observed under
control conditions, with a further reduction in master segments in the control + mimic group
compared to the control alone (Figure 4A–F). In contrast, the High glucose -conditioned
medium significantly increased tube formation (202.4 ± 28.7) (Figure 4G–L). This in-
crease was normalized by an NAC-conditioned medium (127.9 ± 12.24), an miR-205-5p
mimic-conditioned medium (111.7 ± 12.57), and an NAC + miR-205-5p mimic-conditioned
medium (113.1 ± 15.53) (Figure 4K–L).
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Figure 4. miR-205-5p regulates High Glucose-induced tube formation in HUVEC cells. HUVEC cell 
tube formation under different cell culture-conditioned media (CCCM) obtained from ARPE-19 cell 
cultures: control medium (A), control +NAC (B), control + miR-205-5p mimic (C), control +NAC+ 
miR-205-5p mimic (D), 35 mM glucose treated (G), 35 mM glucose medium +NAC (H), 35 mM glu-
cose + miR-205-5p mimic (I), and 35 mM glucose + NAC + miR-205-5p mimic (J). Total length (E,K) 
and number of master segments (F,L) were obtained from all experimental conditions (n = 3) (3x3 = 
9 samples/experimental condition) by using Image J 1.54g software. Values are expressed as mean 
± SEM (n = 3). p-value was obtained by one-way ANOVA; * p < 0.05, ** p < 0.01, *** p < 0.001 and **** 
p < 0.0001. 

Figure 4. miR-205-5p regulates High Glucose-induced tube formation in HUVEC cells. HUVEC cell
tube formation under different cell culture-conditioned media (CCCM) obtained from ARPE-19 cell
cultures: control medium (A), control +NAC (B), control + miR-205-5p mimic (C), control +NAC+
miR-205-5p mimic (D), 35 mM glucose treated (G), 35 mM glucose medium +NAC (H), 35 mM
glucose + miR-205-5p mimic (I), and 35 mM glucose + NAC + miR-205-5p mimic (J). Total length
(E,K) and number of master segments (F,L) were obtained from all experimental conditions (n = 3)
(3 × 3 = 9 samples/experimental condition) by using ImageJ 1.54g software. Values are expressed as
mean ± SEM (n = 3). p-value was obtained by one-way ANOVA; * p < 0.05, ** p < 0.01, *** p < 0.001
and **** p < 0.0001.

The High glucose-conditioned medium also significantly enhanced HUVEC migra-
tion compared to control conditions (Figure 5A,B). Treatment with NAC- or miR-205-
5p-conditioned media restored HUVEC migration to control levels, consistent with the
Matrigel results (Figure 5A–C). Additionally, cell viability, which was significantly re-



Antioxidants 2025, 14, 218 10 of 17

duced under High glucose conditions, was restored by NAC, miR-205-5p mimic, or their
combination (Figure 5D).
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Figure 5. HUVEC cells’ migration is hindered by miR-205-5p. Representative images were captured
at 0, 4, 8, and 24 h after HUVEC migration under various conditions (A). Quantification of cell
migration (B,C). ARPE-19 cell viability was assessed using the XTT assay (D). Values are presented as
mean ± SEM (Migration n = 4 and viability n = 6). p-value was determined using one-way ANOVA;
* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.
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3.4. Alloxan-Induced Diabetic Mice Model

A significant weight loss was observed in diabetic animals compared to the control
group (36.26 ± 0.92) (Figure 6A,B). Alloxan administration led to elevated blood glucose
levels (>500 mg/dL) within 24 h post-injection, significantly higher than those in the
control group (547.5 ± 13.18) (Figure 6A,C). Four weeks after diabetes induction, glycated
hemoglobin levels were markedly increased in diabetic animals (12.22 ± 0.46) (Figure 6D).
Additionally, hyperglycemia levels demonstrated a positive correlation with glycated
hemoglobin levels (Figure 6E).

Antioxidants 2025, 14, x FOR PEER REVIEW 12 of 18 
 

mean ± SEM (Migration n = 4 and viability n = 6). p-value was determined using one-way ANOVA; 
* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. 

3.4. Alloxan-Induced Diabetic Mice Model. 

A significant weight loss was observed in diabetic animals compared to the control 
group (36.26 ± 0.92) (Figure 6A–B). Alloxan administration led to elevated blood glucose 
levels (>500 mg/dl) within 24 h post-injection, significantly higher than those in the control 
group (547.5 ± 13.18) (Figure 6A,C). Four weeks after diabetes induction, glycated hemo-
globin levels were markedly increased in diabetic animals (12.22 ± 0.46) (Figure 6D). Ad-
ditionally, hyperglycemia levels demonstrated a positive correlation with glycated hemo-
globin levels (Figure 6E). 

 

Figure 6. Alloxan-induced diabetic mice model. Alloxan significantly decreased weight 4 weeks af-
ter injection (n = 5) (A,B). Alloxan significantly increased high glucose circulating levels in mice 
compared to control animals (n = 6) (C). Glycated hemoglobin (HbA1c) (as a percentage) confirmed 
hyperglycemic conditions in mice compared to control (n = 7) (D). Spearman’s correlation between 
high glucose circulating levels and glycated hemoglobin (n = 15) (E). Values are presented as mean 
± SEM. p-value was determined using t-test; * p < 0.05 and **** p < 0.0001. 

3.5. Intravitreal miR-205-5p Mimic Restores VEGFA Levels in Diabetic Mice Model 

Four weeks after alloxan injection (Figure 7A), eyes from diabetic mice showed a sig-
nificant reduction in miR-205-5p levels (0.50 ± 0.78) (Figure 7B), while VEGFA mRNA lev-
els were markedly increased compared to the control group (8.06 ± 1.22) (Figure 7C). In-
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Figure 6. Alloxan-induced diabetic mice model. Alloxan significantly decreased weight 4 weeks after
injection (n = 5) (A,B). Alloxan significantly increased high glucose circulating levels in mice compared
to control animals (n = 6) (C). Glycated hemoglobin (HbA1c) (as a percentage) confirmed hyper-
glycemic conditions in mice compared to control (n = 7) (D). Spearman’s correlation between high
glucose circulating levels and glycated hemoglobin (n = 15) (E). Values are presented as mean ± SEM.
p-value was determined using t-test; * p < 0.05 and **** p < 0.0001.

3.5. Intravitreal miR-205-5p Mimic Restores VEGFA Levels in Diabetic Mice Model

Four weeks after alloxan injection (Figure 7A), eyes from diabetic mice showed a
significant reduction in miR-205-5p levels (0.50 ± 0.78) (Figure 7B), while VEGFA mRNA
levels were markedly increased compared to the control group (8.06 ± 1.22) (Figure 7C).
Intravitreal injection of the miR-205-5p mimic resulted in a three-fold increase in miR-205-
5p levels in control mice compared to the vehicle group (13.91 ± 5.08). In diabetic mice,
reduced miR-205-5p levels were restored to control values following a mimic injection
(3.10 ± 0.73) (Figure 7B). Similarly, elevated VEGFA mRNA levels in diabetic mice were
significantly reduced to control levels after mimic administration (2.69 ± 0.43) (Figure 7C).
Intravitreal vehicle injections did not significantly alter miR-205-5p or VEGFA mRNA
expression compared to naïve animals (Figure 7D,E).



Antioxidants 2025, 14, 218 12 of 17

Antioxidants 2025, 14, x FOR PEER REVIEW 13 of 18 
 

VEGFA mRNA upregulation corresponded to increased VEGFA protein expression, 
as confirmed by the Western blot analysis. VEGFA protein levels, which were significantly 
elevated in diabetic mice compared to controls, were normalized after the miR-205-5p 
mimic injection, consistent with VEGFA mRNA expression patterns (Figure 7F). 

 

Figure 7. Intravitreal miR-205-5p mimic restores VEGFA mRNA levels. Timeline representation for 
experimental proceeding (A). miR-205-5p levels were significantly decreased in diabetic mice com-
pared to control. Ectopic miR205-5p mimic increased miR-205-5p levels to control ones (B) and 
VEGFA mRNA (C) expression levels were increased in diabetic mice and restored by ectopic miR-
205-5p mimic administration (n = 4). No significant changes were observed by intravitreal vehicle 
injection (D,E) (n = 3). Western blot analysis for VEGFA shows higher levels in diabetic mouse eye 
(n = 3) (F). Values are expressed as mean ± SEM. p-value was obtained by one-way ANOVA; * p < 
0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. 

4. Discussion 
Previous studies have highlighted that miR-205-5p is downregulated under oxida-

tive stress conditions, leading to an increase in VEGFA expression [19]. This observation 
is consistent across different oxidative challenges, including H2O2 [12] and hyperglycemia 
[20]. In our study, we observed that high glucose significantly reduced miR-205-5p ex-
pression in ARPE-19 cells, mirroring findings from oxidative stress models. Importantly, 
this downregulation was reversed by treatment with N-acetylcysteine (NAC), a known 
antioxidant that replenishes glutathione levels, restoring miR-205-5p expression to control 

Figure 7. Intravitreal miR-205-5p mimic restores VEGFA mRNA levels. Timeline representation
for experimental proceeding (A). miR-205-5p levels were significantly decreased in diabetic mice
compared to control. Ectopic miR205-5p mimic increased miR-205-5p levels to control ones (B) and
VEGFA mRNA (C) expression levels were increased in diabetic mice and restored by ectopic miR-
205-5p mimic administration (n = 4). No significant changes were observed by intravitreal vehicle
injection (D,E) (n = 3). Western blot analysis for VEGFA shows higher levels in diabetic mouse
eye (n = 3) (F). Values are expressed as mean ± SEM. p-value was obtained by one-way ANOVA;
* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.

VEGFA mRNA upregulation corresponded to increased VEGFA protein expression,
as confirmed by the Western blot analysis. VEGFA protein levels, which were significantly
elevated in diabetic mice compared to controls, were normalized after the miR-205-5p
mimic injection, consistent with VEGFA mRNA expression patterns (Figure 7F).

4. Discussion
Previous studies have highlighted that miR-205-5p is downregulated under oxidative

stress conditions, leading to an increase in VEGFA expression [19]. This observation is con-
sistent across different oxidative challenges, including H2O2 [12] and hyperglycemia [20].
In our study, we observed that high glucose significantly reduced miR-205-5p expression
in ARPE-19 cells, mirroring findings from oxidative stress models. Importantly, this down-
regulation was reversed by treatment with N-acetylcysteine (NAC), a known antioxidant
that replenishes glutathione levels, restoring miR-205-5p expression to control levels. These
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results suggest that high glucose and oxidative stress converge to suppress miR-205-5p
expression, likely via mechanisms linked to redox imbalance [21].

The relationship between miR-205-5p and VEGFA was further confirmed in our
experiments. In line with previous studies, high glucose conditions led to an upregulation
of VEGFA. Our data revealed that restoring miR-205-5p expression via a mimic transfection
significantly normalized VEGFA mRNA and protein levels, indicating a direct regulatory
link between miR-205-5p and VEGFA under hyperglycemic conditions. Additionally, miR-
205-5p has been shown to inhibit angiogenesis and migration, highlighting its potential
role in counteracting pathological neovascularization and cellular motility associated with
elevated VEGFA levels.

One potential mechanism underlying the downregulation of miR-205-5p under hy-
perglycemic conditions involves the interplay of oxidative stress [19], epigenetic modifica-
tions [22], and transcriptional regulation [17]. Prolonged hyperglycemia is known to induce
oxidative stress and hypoxia, which can significantly alter DNA methylation patterns and
chromatin structure [23]. These epigenetic changes may disrupt the transcription of the
MIR205 gene [24], particularly through the involvement of transcription factors such as
HIF-1α and Sp1 [17], both of which are activated under hyperglycemic stress [25]. HIF-1α
is particularly noteworthy as it directly upregulates VEGFA expression, linking hypoxia
and angiogenesis pathways, which are central to the pathogenesis of diabetic retinopathy
(DR) [26]. Additionally, long non-coding RNAs (lncRNAs) such as MALAT1 may act as
molecular sponges, sequestering miR-205-5p and further reducing its functional availability.
A recent study conducted in retinal endothelial cells demonstrated that MALAT1 sponges
miR-205-5p, exacerbating VEGFA overexpression and contributing to angiogenesis under
hyperglycemic conditions [19]. Furthermore, lncRNAs have been implicated in suppressing
miR-205-5p availability, thereby exacerbating hyperglycemia-induced proliferation and
inflammation [27].

The interplay between insulin signaling, miR-205-5p, and VEGFA highlights a crit-
ical regulatory network in angiogenesis under hyperglycemic conditions. miR-205-5p
modulates insulin sensitivity by targeting FOXO1 [28], and its downregulation under hy-
perglycemia disrupts normal insulin signaling, promoting metabolic dysregulation and
increased VEGFA expression. VEGFA, a key driver of angiogenesis, is further upregulated
under oxidative stress and hypoxia, contributing to vascular permeability and neovascular-
ization in DR. Additionally, studies in diabetic islets reveal that miR-205-5p overexpression
impairs insulin secretion by targeting Tcf7l2, suggesting its dual role in modulating both
metabolic and angiogenic pathways [29].

Several studies have reported reduced expression levels of miRNAs associated with
DR in plasma, which may be implicated in the progression and severity of this diabetes-
related complication [30]. This systemic downregulation of miRNAs, including miR-
205-5p, could potentially influence their expression in ocular tissues, contributing to the
pathological processes underlying DR. Furthermore, miR-205-5p has been specifically
found to be downregulated in extracellular vesicles in the context of diabetes [15,18]. This
systemic reduction highlights the potential role of miR-205-5p in endocrine regulation,
suggesting that its diminished extracellular availability may exacerbate metabolic and
vascular dysregulation commonly observed in diabetic complications [18].

The microRNA miR-205-5p is essential for maintaining the integrity of epithelial
cells [31], including retinal pigment epithelium (RPE) cells. Its downregulation can compro-
mise the epithelial characteristics of these cells, facilitating the epithelial-to-mesenchymal
transition (EMT) [32], particularly under hyperglycemic conditions [19]. Studies have
shown that in ARPE-19 cells exposed to high glucose concentrations, the reduction of
miR-205-5p promotes migratory processes and tube formation [15] indicative of EMT.
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Moreover, the overexpression of miR-205-5p reverses these effects, highlighting its pro-
tective role against hyperglycemia-induced EMT. Similarly, research in keratinocytes has
demonstrated that the overexpression of miR-205-5p increases E-cadherin expression and
reduces mesenchymal markers such as N-cadherin and α-SMA, indicating a reversal of
EMT [27].

The miR-205-5p exhibits a significant anti-angiogenic effect by targeting VEGFA, as
demonstrated in several types of cancers. For instance, in breast cancer, the overexpression
of miR-205-5p reduces cell proliferation, migration, and endothelial tube formation by nega-
tively regulating the Wnt/β-catenin pathway [33]. In hepatocellular carcinoma [34], gastric
cancer [13], and bladder cancer [35], miR-205-5p has been identified as a key regulator
of angiogenesis through VEGFA modulation. Interestingly, miR-205-5p is overexpressed
in certain conditions where it promotes disease progression. In cutaneous squamous cell
carcinoma [36], esophageal squamous cell carcinoma [37], and neck squamous cell carci-
noma [38], these findings suggest that the role of miR-205-5p is highly context-dependent,
varying across tissues and disease states.

However, a significant limitation in the field of ophthalmology is that most of these
studies have been conducted in the context of cancer biology, leaving a gap in under-
standing how miR-205-5p functions in ocular diseases such as DR or age-related macular
degeneration [19]. Although VEGFA serves as a central mediator in both cancer and oc-
ular neovascular diseases, the unique microenvironment of the retina, coupled with the
specialized functions of RPE cells, introduces specific complexities [2].

According to previous studies and the findings from our work, miRNAs such as
miR-203a-3p, miR-126, and miR-205-5p have demonstrated potent anti-angiogenic effects,
largely through their ability to directly bind to the 3′UTR of VEGFA mRNA and downregu-
late its expression. For example, Han et al. showed that the intravitreal administration of
miR-203a-3p in an oxygen-induced retinopathy model significantly reduced VEGFA and
HIF-1α expression, mitigating retinal neovascularization [39]. Similarly, Fan et al. reported
that miR-126 inhibited pathological retinal angiogenesis in a retinopathy of prematurity
in an in vivo model, demonstrating its potential to suppress VEGFA-driven neovascular
growth [40].

In line with these findings, our study shows that miR-205-5p, when administered
intravitreally as a mimic, restores VEGFA levels and reduces angiogenic processes both
in vitro and in vivo, as demonstrated in the diabetic mouse model. While these miRNAs
share overlapping mechanisms in VEGFA regulation, miR-205-5p offers an additional layer
of regulation by its interplay with oxidative stress pathways, further enhancing its potential
therapeutic relevance.

However, while miRNAs show great promise, limitations persist in their translation
to clinical settings, particularly in ophthalmology. Intravitreal delivery methods, though
effective, pose risks such as inflammation and endophthalmitis, and their repeated use can
diminish patient compliance [41]. Future studies should explore alternative delivery strate-
gies to improve patient safety and evaluate the long-term outcomes of miRNA therapies
in preclinical models, as these advancements are critical for their integration into routine
clinical practice.

5. Conclusions
In summary, our findings underscore the therapeutic potential of miR-205-5p in

mitigating hyperglycemia-induced VEGFA overexpression and pathological angiogenesis.
Through intravitreal administration and in vitro mimic transfection, miR-205-5p effectively
restored VEGFA levels and inhibited key processes such as angiogenesis and migration,
which are central to the progression of diabetic retinopathy. These results highlight miR-
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205-5p as a promising candidate for developing RNA-based therapies targeting VEGFA,
particularly for patients unresponsive to current antibody-based treatments.
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